AAC Accepted Manuscript Posted Online 7 September 2021 Antimicrob Agents Chemother doi:10.1128/AAC.01063-21 Copyright © 2021 American Society for Microbiology. All Rights Reserved.

1	Safety, tolerability, pharmacokinetics and immunogenicity of a monoclonal
2	antibody (SCTA01) targeting SARS-CoV-2 in healthy adults: A randomized,
3	double-blind, placebo-controlled, phase I study
4	
5	Running title: phase I study of SCTA01 for SARS-CoV-2
6	
7	Yinjuan Li ^{1#} , Lu Qi ^{1#} , Haihong Bai ^{1#} , Chunyun Sun ^{2,3,4} , Shuping Xu ² , Yu Wang ¹ ,
8	Chunyu Han ¹ , Yan Li ¹ , Long Liu ¹ , Xiaoqiang Cheng ¹ , Ju Liu ¹ , Chunpu Lei ¹ , Yuanxu
9	Tong ¹ , Mingli Sun ¹ , Lixin Yan ² , Weiqiu Chen ² , Xisheng Liu ² , Qing Liu ² , Liangzhi Xie
10	^{2,3,4*} , Xinghe Wang ^{1*}
11	
12	¹ Department of Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical
13	University, Beijing, China
14	² Sinocelltech Ltd., Beijing, China
15	³ Beijing Engineering Research Center of Protein and Antibody, Beijing, China
16	⁴ Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union
17	Medical College, Beijing 100005, China
18	
19	[#] These authors contributed equally
20	
21	*Correspondence to:
22	Xinghe Wang, Department of Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital
23	Medical University, Tieyi Road, Yangfangdian, Haidian District, Beijing, China.
24	Tel.: +86-010-63926401; E-mail: wangxh@bjsjth.cn

1

- 25 Liangzhi Xie, Sinocelltech Ltd., Beijing, China; Beijing Engineering Research Center of
- 26 Protein and Antibody, Beijing, China; Cell Culture Engineering Center, Chinese Academy of
- 27 Medical Sciences & Peking Union Medical College, Beijing 100005, China.
- 28 Tel.: +86-010-58628366; E-mail: liangzhi xie@sinocelltech.com
- 29
- 30

Antimicrobial Agents and Chemotherapy

31	Abstract
31	Abstract

32	SCTA01 is a novel monoclonal antibody with promising prophylactic and therapeutic
33	potential for COVID-19. This study aimed to evaluate the safety, tolerability,
34	pharmacokinetics (PK) and immunogenicity of SCTA01 in healthy adults. This was a
35	randomized, double-blind, placebo-controlled, dose-escalation phase I clinical trial. Healthy
36	adults were randomly assigned into the following four cohorts, Cohort 1 (n=5, 3:2), Cohort 2
37	(n=8, 6:2), Cohort 3 and Cohort 4 (both n=10, 8:2), to receive SCTA01 (5, 15, 30 and 50
38	mg/kg, respectively) versus placebo. All participants were followed up for clinical,
39	laboratory, PK and immunogenicity assessments for 84 days. The primary outcomes were the
40	dose-limiting toxicity (DLT) and maximal tolerable dose (MTD), and the secondary
41	outcomes included PK parameters, immunogenicity and adverse events (AE). Of the 33
42	participants, 18 experienced treatment-related AEs; the frequency was 52.0% (13/25) in
43	participants receiving SCTA01 and 62.5% (5/8) in those receiving placebo. All AEs were
44	mild. There was no serious AE or death. No DLT was reported, and MTD of SCTA01 was not
45	reached. SCTA01 with a dose range 5-50mg/kg had nearly linear dose-proportional increases
46	in C_{max} and AUC parameters. An anti-drug antibody response was detected in four (16.0%)
47	participants receiving SCTA01, with low titers, between the baseline and day 28, but all
48	became negative later. In conclusion, SCTA01 up to 50mg/kg was safe and well-tolerated in
49	healthy participants. Its PK parameters were nearly linear dose-proportional.
50	Trial registration: ClinicalTrials.gov NCT04483375.
51	
52	Keywords: COVID-19, SARS-Cov-2, monoclonal antibody, safety, pharmacokinetics

53

AAC

54 Introduction

55	Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome		
56	coronavirus 2 (SARS-CoV-2) and manifesting as respiratory tract infection with severe		
57	multiorgan dysfunction, has become a worldwide pandemic since the first reported case in		
58	December 2019 (1). The number of confirmed cases of COVID-19 has exceeded 103 million		
59	with over 2 million deaths as of February 1, 2020 (2). Remdesivir, a nucleotide prodrug of an		
60	adenosine analog, is currently the only drug approved for the treatment of COVID-19 (3),		
61	and efficacious therapeutic strategies for COVID-19 are still largely lacking.		
62			
63	Antibody-based passive immunotherapies including convalescent plasma and monoclonal		
64	antibodies are reported to be promising treatment options for COVID-19 as they neutralize		
65	SARS-CoV-2 by primarily targeting the receptor-binding domain (RBD) of the spike protein		
66	that mediates its entry into the host cells (4-13). Previous studies have shown that		
67	convalescent plasma is associated with improved viral load suppression, clinical symptoms		
68	and survival in the treatment of COVID-19 (6-13). However, the collection of sufficient		
69	plasma from infected COVID-19 patients is not always feasible and practical. Thus,		
70	monoclonal antibodies are highly expected to play a critical role in fighting against COVID-		
71	19. Currently, more than 20 anti-SARS-CoV-2 monoclonal antibodies are being investigated		
72	in the preclinical and clinical trials (14). Based on the clinical benefits and verified viral load		
73	decline in outpatient trials, an antibody cocktail consisting of casirivimab and imdevimab,		
74	and bamlanivimab as a monotherapy have been approved by the Food and Drug		
75	Administration of the United States of America in November 2020 for emergency use to treat		
76	patients with mild to moderate COVID-19 symptoms (5, 15, 16). Although bamlanivimab		
77	alone failed to demonstrate a clinical benefit for hospitalized COVID-19 patients without		
78	end-stage organ failure (17), a combination of bamlanivimab with etesevimab significantly		

reduced hospitalizations and deaths among high-risk patients recently diagnosed with
 COVID-19 (18). Increasing evidence suggests that anti-SARS-CoV-2 monoclonal antibodies

81 are efficacious in the prevention and treatment of COVID-19 (19).

82

83	SCTA01, also named HB27, is a newly developed monoclonal antibody of IgG1 subtype with
84	functions similar to bamlanivimab, but possesses unique features (20). The Fc-mutated
85	(LALA) modification of SCTA01 not only reduces antibody-dependent enhancement (ADE)
86	and antibody-dependent cell cytotoxicity (ADCC), but also guarantees its high-affinity
87	neutralizing responses (Supplementary Figure 1) (20). Our previous in vitro study validated
88	the neutralizing activity of SCTA01 with a classical plaque reduction neutralization test value
89	of 0.22nM (20). In addition, both prophylactic and therapeutic efficacies of SCTA01 were
90	demonstrated in animal experiments (20). Specifically, a single dose of 20 mg/kg
91	administered either before or 2 hours after SARS-CoV-2 exposure both resulted in >99.9%
92	reduction of the viral RNA load 5 days post-infection in the lungs and trachea in the mice
93	model, accompanied by alleviation of pulmonary pathological damage (20). In the rhesus
94	monkey model, no obvious adverse events (AE) were observed when administrated with 10-
95	fold of the effective dose of SCTA01 (500mg/kg) (20).
96	
97	Based on these encouraging findings in vitro and in animal models, this randomized, double-
98	blind, placebo-controlled phase I study was carried out to evaluate the safety, tolerability,
99	pharmacokinetics (PK) and immunogenicity of SCTA01 targeting SARS-CoV-2 in healthy
100	adults.
101	

102 **Results**

103 Demographics and baseline characteristics of the participants

Antimicrobial Agents and Chemotherapy

AAC

Antimicrobial Agents and Chemotherapy

10)4	Overall, 33 participants (22 males and 11 females with an average age of 31.4±6.8 years)
10)5	were randomized to receive SCTA01 (n=25) or placebo (n=8) between July 24, 2020 and
10)6	August 21, 2020. The baseline demographic characteristics were balanced across cohorts
10)7	(Table 1).
10)8	
10)9	The average follow-up duration was 85.3 days for participants receiving SCTA01 and 84.5
11	10	days for those receiving the placebo. All participants completed the planned dose of SCTA01
11	1	or placebo (Table 2).
11	12	
11	13	Safety and tolerability
11	14	Overall, 21 participants experienced 49 AEs; 18 participants had 34 AEs that were classified
11	15	as TRAEs. The percentage of participants with TRAEs was lower with SCTA01 than placebo
11	16	[13 (52.0%) vs. 5 (62.5%)]. All TRAEs were mild at grade 1 or 2, and no SAE or death was
11	17	observed. Thus, there was no DLT, and MTD of SCTA01 was not reached in the present study.
11	18	(Table 3, Supplementary Table 1).
11	19	
12	20	Most TRAEs were experienced only by one participant receiving SCTA01. TRAEs occurring
12	21	at a frequency greater than 10% included increased blood conjugated bilirubin (n=4, 16.0%)
12	22	and unconjugated bilirubin (n=3, 12.0%) in participants receiving SCTA01, and increased
12	23	blood unconjugated bilirubin (n=1, 12.5%), increased aspartate aminotransferase (n=1,
12	24	12.5%), decreased lymphocyte count (n=1, 12.5%), increased white blood cells in the urine
12	25	(n=1, 12.5%) and decreased diastolic blood pressure (n=1, 12.5%) in participants receiving
12	26	the placebo. The increased levels of blood bilirubin and alanine aminotransferase did not
12	27	exceed 2 times the upper limit of normal (ULN). TRAEs were mostly self-recovered. Rash
12	28	developed in a participant receiving 50mg/kg of SCTA01 was recovered after treatment with
		6

Antimicrobial Agents and Chemotherapy

AAC

129	loratadine combined with mometasone furoate cream, and epistaxis developed in another
130	participant receiving 50mg/kg of SCAT01 was recovered after symptomatic medications
131	(Table 3).
132	
133	PK profiles
134	The mean SCTA01 serum concentrations versus time (linear and semi-logarithmic) displayed
135	a dose-dependent manner (Figure 1).
136	
137	The median T_{max} values were 1.32, 1.92, 2.83, and 3.16 h for SCTA01 doses of 5 mg/kg, 15
138	mg/kg, 30 mg/kg, and 50 mg/kg, respectively. C_{max} , AUC _{0-t} , AUC _{0-∞} , and AUC _{0-28d} increased
139	in a dose-dependent manner after SCTA01 infusion. The mean value of $t_{1/2}$ in each dose
140	group was relatively close, between 25.8 and 30.2 days. In addition, similar CL and Vd
141	values at different doses of SCTA01 were observed (Table 4).
142	
143	The dose-proportional PK properties after SCTA01 administration are shown in
144	Supplementary Table 2. Within the evaluated SCTA01 dose range (5-50 mg/kg), the slope β
145	1 of dose proportionality of main PK parameters (C_{max} , AUC_{0-t} , $AUC_{0-\infty}$ and AUC_{0-28d}) were
146	close to 1, indicating that PK of SCTA01 was linear and dose-proportional in the dose range
147	of 5-50 mg/kg (Supplementary Figure 2).
148	
149	Immunogenicity
150	The incidences for a positive ADA and Nab response were 1/3, 1/6, 1/8, and 1/8, and 0/3, 1/6,
151	1/8 and 1/8, in the 5, 15, 30, and 50 mg/kg cohorts, respectively. Totally 4 out of 25 (4/25)
152	and 3 out of 25 (3/25) participants had positive responses of ADA and Nab, respectively
	7

153 (Table 5). One participant receiving 50mg/kg of SCTA01 had positive ADA and Nab 154 responses at the baseline and on day 7. One participant receiving 15mg/kg of SCTA01 had a 155 positive ADA response on days 7 and 28, and a positive Nab at day 28. One receiving 156 30mg/kg of SCTA01 had positive ADA and Nab responses on day 7. One in 5mg/kg of 157 SCTA01 had a positive ADA but negative Nab on day 7. No correlation was found between 158 the positive responses and SCTA01 doses, and all positive response titers were low. All 159 participants became negative for ADA and Nab responses at the subsequent time points 160 (Table 5). 161 162 Discussion 163 The ongoing COVID-19 pandemic underlines the urgent need to develop prophylactic and 164 therapeutic agents. The novel monoclonal antibody SCTA01 for the treatment of COVID-19 165 was supported by our preclinical study which proved its nonclinical safety and antiviral 166 activity (20). This phase I clinical trial demonstrated that SCTA01 appeared to be safe and 167 tolerable at a single dose up to 50mg/kg in humans. All observed TRAEs were mild and most 168 were self-recovered, and no SAE or death was observed. The dose-proportional PK 169 characteristics of SCTA01 supported a single intravenous administration which may well 170 cover the clinical disease course of COVID-19. In addition, a transient ADA response with 171 low titers was observed in a small proportion of participants receiving SCTA01. 172 173 The present phase I trial in healthy volunteers exhibited a favorable safety in humans. During 174 the 12-week observation period, no DLT was reported and hence no MTD of SCTA01 was 175 established. No TRAE with severity greater than grade 3 was observed. An increased blood 176 bilirubin level was the most common TRAE experienced in participants receiving the

177 SCTA01 (n=7), but the level did not exceed 2 times the ULN. Protein in urine, sinus

178	bradycardia, prolonged QT interval and rash occurred in participants receiving SCTA01, but
179	in none of those receiving the placebo. However, protein in urine presented in two
180	participants receiving 5mg/kg and 15mg/kg, respectively, was mild (at grade 1), transient and
181	self-recovered within one week after the completion of the SCTA01 administration. One
182	participant receiving SCTA01 at 15mg/kg had a baseline sinus rhythm of 62 beats per minute
183	experienced sinus bradycardia (47 beats per minute) on day 3 and recovered without
184	intervention after 7 hours. Another one receiving the same dose of SCTA01 with a baseline
185	QT interval close to the lower limit of normal (QTcB 449ms, QTcF 442ms) developed
186	prolonged QT interval at grade 1 or 2 on days 3 (QTcB 460ms, QTcF 454ms), 14 (QTcB
187	451ms, QTcF 448ms), 42 (QTcB 458ms, QTcF 449ms) and 84 (QTcB 444ms, QTcF 449ms).
188	However, no cardiac symptoms were reported, and the electrocardiogram findings were not
189	considered clinically significant. Rash experienced in one participant receiving 50mg/kg of
190	SCTA01 was successfully treated with loratadine and mometasone furoate cream. It is
191	noticeable that previous clinical trials of other neutralizing antibodies, LY-CoV555 and
192	REGAN-COV2, in outpatients reported symptoms such as nausea, diarrhea and dizziness,
193	instead of laboratory abnormalities, as AEs (5, 15, 17). It is likely that it might be difficult to
194	obtain regular laboratory results during the follow-up for trials conducted in outpatients with
195	COVID-19 (5, 15). In the LY-CoV555 phase I trial, notable laboratory abnormalities
196	including a decreased absolute neutrophil count and an increased hepatic enzyme level were
197	reported, but they were declared to be drug-unrelated (5, 21). Considering the limited sample
198	size in the present phase I study, the attribution of observed AEs to SCTA01 could not be
199	fully determined and further investigation is warranted.
200	
201	In the present trial, the highest dose of SCTA01 (50 mg/kg) used in healthy adults achieved a

 $202 \qquad C_{max}\, of\, 1040\,\,\mu\text{g/mL} \text{ and an AUC}_{0\text{-}28\text{d}}\, of\, 11900\,\, d^{*}\mu\text{g/mL}, \text{ which well reached the target goal.}$

Accepted Manuscript Posted Online

AAC

203	44

204	Based on our previous cell experiment and trials in animals of neutralization and efficacy
205	evaluation, SCTA01 at 20mg/kg remarkably reduced SARS-CoV-2 viral loads and alleviated
206	lung inflammation in mice and rhesus monkeys and SCTA01 at 500 mg/kg was related to the
207	efficacy and tolerable safety as reflected by normal laboratory results and organ functions in
208	rhesus monkeys (20). The starting dose in the present study in healthy participants was 100-
209	times lower than the maximum preclinical animal toxicity study dose of 500 mg/kg. Based on
210	dose conversion from animals to humans, 50 mg/kg SCTA01 is speculated to be sufficient in
211	the viral neutralization. In addition, antibody LY-CoV555 at 2800 mg dose in outpatients with
212	COVID-19 was proved to be efficient in viral clearance (5). We therefore speculate that a
213	single intravenous injection of SCTA01 at 50 mg/kg should be tried initially in the
214	subsequent human efficacy trials. In addition, unlike small molecules, monoclonal antibodies
215	do not depend on the kidney or liver for the clearance (22). Hence, corresponding organ
216	failures in severe or critical COVID-19 patients may have a minimal effect on the clearance
217	and metabolism of SCTA01 in the real clinical setting.
218	
219	The PK profile of SCTA01 indicates that SCTA01 is active for a period that may exceed the
220	clinical course of COVID-19. Among patients with SARS-CoV-2 infection, mild or moderate
221	COVID-19 represents the majority while approximately one-fifth are categorized into severe
222	(14%) or critical (5%) cases requiring hospitalization or emergency intervention (23). The
223	median time from the onset of COVID-19 to the time experiencing dyspnea is 5-8 days and
224	the median time from the onset to acute respiratory distress syndrome is 8-12 days (24-27).
225	The median duration of viral shedding is 20.0 days in COVID-19 survivors (26). In the
226	present study, the maximum concentration of SCTA01 occurred at 1-3 h after infusion and
227	remained detectable for a long period with $t_{1/2}$ around 25.8-30.2 days. All these data indicate

the persistent antibody-viral responses by a single dose application of SCTA01. Of course,
the real distribution of SCTA01 might be different in patients with SARS-CoV-2 infection
due to multiple affecting factors. Further studies are necessary to confirm the PK profiles and
investigate the pharmacodynamics of SCTA01 in infected patients.

232

233 As a heterologous protein, SCTA01 may cause a positive ADA response which may alter the 234 PK properties of the drug, affect its efficacy and eventually lead to clinical problems such as 235 allergic reactions (28, 29). SCTA01 as a monoclonal antibody is considered to have low 236 immunogenicity risk (30). Moreover, the target of SCTA01 is the spike protein of SARS-237 CoV-2, which is an exogenous target. In the present study, although four (16%) out of 25 238 healthy participants receiving SCTA01 presented with a positive ADA response, all responses 239 were transient with low titers and turned negative during the follow-up. There was no 240 correlation between positive ADA responses and SCTA01 doses. More importantly, there 241 were no clinical allergic signs in these positive cases. Only one participant had a slightly 242 elevation of alanine aminotransferase (grade 1) concurrent with a positive ADA response, 243 which was recovered without medication. Furthermore, the baseline and PK characteristics in 244 participants with a positive ADA response did not differ from that in those with negative 245 responses. In our previous nonclinical study of SCTA01, no ADE response or ADCC 246 phenomenon was detected (20). It is postulated that the Fc-mutated (LALA) modification of 247 SCTA01 contributes to, at least partially, the reduction of ADE and ADCC. Therefore, a 248 positive ADA response is thought to have limited clinically significant implications for 249 SCTA01. 250

251 There are a couple of limitations in the present study. First, the sample size was relatively
252 small, and as such the sample size was small in each cohort. Second, the study population

Antimicrobial Agents and

Chemotherapy

were healthy participants, instead of patients with COVID-19. Thus, multi-center, phase II/III
trials with a larger sample size are ongoing to fully assess the efficacy and safety of SCTA01
in adult patients with COVID-19.

256

257 In conclusion, a single infusion of SCTA01 up to 50mg/kg is safe and well-tolerated in

258 healthy participants at potentially therapeutic exposures. PK parameters were nearly linear

259 dose-proportional and ADA incidence was acceptable with low titers.

260

261 Materials and Methods

262 Study design and participants

263 This was a double-blind, placebo-controlled, single-dose escalation, phase I randomized 264 controlled trial. The inclusion criteria were as follows: 1) age ≥ 18 years, 2) body mass index (BMI) within 18.0-26.0 kg/ m^2 , 3) healthy status as evaluated by previous medical history, 265 266 physical examination, 12 leads electrocardiogram, chest CT scan and laboratory tests, and 4) 267 willingness to follow the study procedure, use contraceptive measures during the study period 268 and within 6 months after the end of study. The exclusion criteria included: 1) allergy to 269 humanized monoclonal antibodies and any ingredient of SCTA01, 2) suspected or verified 270 SARS-CoV-2 infection, 3) a history of severe allergies, 4) infection or fever within 14 days 271 before enrollment, 5) a history or presence of diseases, in the opinion of the investigator, 272 which significantly affect the absorption, metabolism or elimination of drugs, 6) evidence of 273 human immunodeficiency virus (HIV) infection and/or positive human HIV antibodies, 7) 274 confirmed presence of hepatitis virus and syphilitic antibody, and 8) pregnancy or plan to be 275 pregnant within 6 months after the study. 276 277 Written informed consent was obtained from all participants. The study protocol was

12

Antimicrobial Agents and

Chemotherapy

278 approved by the Institutional Review Board of Beijing Shijitan Hospital, Capital Medical 279 University (approval number: 2020-38). The study was performed in accordance with the 280 local requirements and International Conference on Harmonization-Good Clinical Practice 281 (ICH-GCP) guidelines. This trial was registered at ClinicalTrials.gov (number 282 NCT04483375).

283

284 Randomization and dose escalation

285 The random allocation sequence was generated using SAS v.9.4 (SAS Institute, Cary, NC) by

286 an unblinded statistician. Randomization envelopes were used to randomly assign

287 participants to receive a single dose of placebo or SCTA01 in one of four dose cohorts. Study

288 participants and site investigators remained masked throughout the entire study. The dose-

289 escalation rule was adopted. Totally, 33 participants were randomized into four cohorts as

290 follows: 1) Cohort 1, five participants were randomly assigned 3:2 to SCTA01 5 mg/kg or

291 placebo. A sentinel strategy was applied in the cohort. Initially, two participants (1:1) were

292 recruited. Then three (2:1) were recruited as no safety issues were observed; 2) Cohort 2,

293 eight participants were randomly assigned 6:2 to SCTA01 15 mg/kg or placebo; 3) Cohort 3,

294 10 participants were randomly assigned 8:2 to SCTA01 30 mg/kg or placebo; and 4) Cohort

295 4: 10 participants were randomly assigned 8:2 to SCTA01 50 mg/kg or placebo.

296

297 Drug administration and blood sample preparation

- 298 SCTA01 injection, which was manufactured by SCT Inc (China) and supplied in vials
- 299 containing 25 mg/mL, was diluted with 0.9% normal saline to make a final concentration of 5
- 300 mg/mL for intravenous infusion. The participants recruited in the four cohorts were
- 301 administered with SCTA01 at a dose of 5 mg/kg, 15 mg/kg, 30 mg/kg, and 50 mg/kg,
- 302 respectively. The starting dose of 5 mg/kg was 100-times lower than the maximum

preclinical animal toxicity study dose of 500 mg/kg (20). The same volume of placebo
formulated with excipients without SCTA01 was administered to participants in each cohort.
Participants were administered under fasting conditions and remained fasting (without limit
to water) for 4 h since administration. The intravenous infusion rate was controlled to be
lower than 3.33 mL/h/kg.

Blood samples were obtained within 0.5 h before infusion (baseline), immediately after
infusion (+5 min), at 1, 4 and 8 h (post-infusion), and on days 1, 3, 7, 14, 21, 28, 42, 63 and
84 for PK analysis. In addition, blood samples were obtained within 0.5 h before infusion
(baseline), and on days 7, 14, 28, 42, 63 and 84 for immunogenicity analysis.

313

314 Determination of serum SCTA01 concentrations and immunogenicity

315 Serum SCTA01 concentrations were determined by enzyme-linked immunosorbent assay.

316 Briefly, SARS-CoV-2 Spike protein was coated on a 96-well plate to capture SCTA01 in

317 serum samples. Goat anti-human IgG-Fc secondary antibody was added, and streptavidin-

318 conjugated with horseradish peroxidase and 3,3',5,5'-tetramethylbenzidine substrate were

319 used for the reaction. The concentrations were detected at 450nm and 620 nm with a

320 Molecular Devices Microplate reader (Molecular Devices, San Jose, CA, USA). The

321 minimum required dilution of serum samples was 1:200. The serum SCTA01 concentrations

322 were quantified by using a linear regression of a SCTA01 standard curve covering a range of

323 200–10,000 ng/mL.

324

325 Blood samples collected for immunogenicity analysis were assessed for anti-drug antibodies

- 326 (ADA), and anti-SCTA01 neutralizing antibodies (Nab) on the basis of the Meso Scale
- 327 Discovery electrochemiluminescence homogenous bridging assay (Meso Scale Discovery,

Antimicrobial Agents and

Chemotherapy

328 Rockville, MD, USA). After being separated from human serum by binding to SCTA01 in 329 ELISA plate, anti-SCTA01 antibodies bind to both Ru-SCTA01 and Bio-SCTA01 molecules 330 to form an antibody complex bridge, called "Biotinylated- SCTA01-ADA- SCTA01-331 ruthenylated", and then the complex bind to SA-MSD plate. With the addition of 2X MSD 332 read buffer, ruthenium label produces a chemiluminescent signal which is proportional to the 333 concentration of ADA (MESO QuickPlex SQ120, MSD). Determination of ADA consisted 334 of 3 sequential steps as screening, confirmatory and titer assays as previously described (31). 335 A titer cut point factor (TCPF) was set at 1.61 and positively confirmed samples with TCPF < 336 1.61 were reported with titer value of 1. 337

338 Determination of safety and tolerability of SCTA01

339 Safety profiles including clinical manifestations and abnormalities in electrocardiograms and

340 laboratory tests were closely monitored on days 0, 1, 3, 7, 14, 21, 28, 42, 63 and 84. Any

341 adverse events (AE) and serious AEs (SAE) experienced by the participants were recorded. A

342 treatment-related AE (TRAE) was defined as any AE that was possibly, probably or definitely

343 related to the study drug, as judged by the investigator, and the severity of a TRAE was

344 determined based on the Division of AIDS (DAIDS) Table for Grading the Severity of Adult

345 and Pediatric Adverse Events, Version 2.1 (32).

346

347 The dose-limiting toxicity (DLT) was defined as TRAE of grade 3 or higher (32). If necessary, 348 the unblinded statistician was requested to summarize the occurrence of DLTs in the SCTA01 349 group, and the investigator and the sponsor decided together whether or not to discontinue the 350 dose escalation, to lower the dose, or to continue with the next dose group. The maximum 351 tolerated dose (MTD) was defined as the highest dose of SCTA01 at which one out of three 352 participants had DLT during the 84-day observation period (32).

Antimicrobial Agents and Chemotherapy

AAC

353

354 Outcomes

001	
355	The primary endpoints were DLT and MTD of SCTA01. The secondary endpoints were the
356	PK parameters including the integral of the concentration-time curve from dosing to time-
357	point (AUC _{0-t}), the integral of the concentration-time curve from dosing to infinity (AUC _{0-∞}),
358	half-life $(t_{1/2})$, the time taken to reach the maximum concentration (T_{max}) , immunogenicity
359	indicated by the generation of ADA and safety reflected by the occurrence of AEs and SAEs.
360	
361	Statistical analysis
362	The sample size for this trial was based on the dose-escalation rule and not on any statistical
363	criteria.
364	
365	The safety analysis included all randomized participants who received any dose of the study
366	drug. Participants receiving placebo in different cohorts were pooled together. All
367	participants who were randomized and received any dose of the SCTA01 or placebo were
368	included in the intention-to-treat analysis, whereas those who completed the study were
369	included in the per-protocol analysis. Categorical and continuous data including clinical
370	laboratory results, vital signs, and electrocardiographic features at each time-point were
371	summarized descriptively, as they were not appropriate for statistical analysis due to the
372	small sample size.
373	
	356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

374 Participants who received SCTA01 and had at least one measurement of PK after the first
375 dose were included in PK analysis. The PK parameters including T_{max}, C_{max}, AUC_{0-∞}, AUC_{0-t},
376 the integral of the concentration-time curve from dosing to day 28 (AUC_{0-28d}), t_{1/2}, Vd and
377 CL were calculated by a non-compartmental analysis with Certara Phoenix WinNonlin

378

379

380

381

382

Abbreviations

Antimicrobial Agents and Chemotherapy

383	COVID-19: coronavirus disease 2019; SARS-CoV-2: severe acute respiratory syndrome
384	coronavirus 2; RBD: receptor-binding domain; ADE: antibody-dependent enhancement;
385	ADCC: antibody-dependent cell cytotoxicity; AE: adverse events; DLT: dose-limiting
386	toxicity; MTD: maximal tolerable dose;
387	
388	Acknowledgments: None
389	
390	Funding
391	This work was supported by Beijing Municipal Science and Technology Project
392	(Z201100005420017) and National Science and Technology Major Project
393	(2018ZX09711003).
394	
395	Conflict of interest
396	Liangzhi Xie is the CEO of Sinocelltech Ltd., Beijing, China. Chunyun Sun, Shuping Xu,
397	Lixin Yan, Weiqiu Chen, Xisheng Liu, Qing Liu are employees of Sinocelltech Ltd., Beijing,
398	China. Other authors have no conflict of interest to declare.
399	
400	Availability of data and material

- 401 The datasets generated and analyzed during the current study are available from the
- 402 corresponding author on reasonable request.

software (version 8.3.1). The Power Model was used to analyze the dose-proportionality for

5-50mg/kg dose range. The SAS software (version 9.4, SAS Institute, Cary, North Carolina,

USA) was used to perform statistical analysis.

403

404 Authors' contributions

- 405 XHW, LZX, SPX, CYS, WQC and LXY conceived and designed research; YJL, LQ, HHB,
- 406 YW, CYH, YL, CPL, LL, XQC, JL, YXT, MLS, XSL and QL collected data and conducted
- 407 research; YJL, LQ and HHB analyzed and interpreted data; YJL, LQ and HHB wrote the
- 408 initial paper; XHW and LZX revised the paper; XHW and LZX had primary responsibility
- 409 for final content. All authors read and approved the final manuscript.

410

411

Antimicrobial Agents and Chemotherapy

AAC

412 **References**

413	1.	Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY,
414		Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu W, Chen C, Jin L,
415		Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y,
416		Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B,
417		Leung GM, Feng Z. 2020. Early Transmission Dynamics in Wuhan, China, of Novel
418		Coronavirus-Infected Pneumonia. N Engl J Med 382:1199-1207.
419	2.	Kurishima K, Watanabe H, Ishikawa H, Satoh H, Hizawa N. 2017. Survival of patients
420		with lung cancer and diabetes mellitus. Mol Clin Oncol 6:907-910.
421	3.	Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, Fu S, Gao L, Cheng Z, Lu Q, Hu Y, Luo G,
422		Wang K, Lu Y, Li H, Wang S, Ruan S, Yang C, Mei C, Wang Y, Ding D, Wu F, Tang X,
423		Ye X, Ye Y, Liu B, Yang J, Yin W, Wang A, Fan G, Zhou F, Liu Z, Gu X, Xu J, Shang L,
424		Zhang Y, Cao L, Guo T, Wan Y, Qin H, Jiang Y, Jaki T, Hayden FG, Horby PW, Cao B,
425		Wang C. 2020. Remdesivir in adults with severe COVID-19: a randomised, double-blind,
426		placebo-controlled, multicentre trial. Lancet 395:1569-1578.
427	4.	Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S,
428		Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S.
429		2020. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a
430		Clinically Proven Protease Inhibitor. Cell 181:271-280.e278.
431	5.	Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, Huhn G, Cardona J,
432		Mocherla B, Stosor V, Shawa I, Adams AC, Van Naarden J, Custer KL, Shen L, Durante
433		M, Oakley G, Schade AE, Sabo J, Patel DR, Klekotka P, Skovronsky DM. 2021. SARS-
434		CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19. N Engl J Med
435		384:229-237.
436	6.	Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C,

437		Yuan M, Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Xu
438		Y, Chen W, Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z,
439		Deng K, Xia Z, Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi
440		Z, Chen S, Chen Z, Zhang X, Yang X. 2020. Effectiveness of convalescent plasma
441		therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A 117:9490-9496.
442	7.	Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J,
443		Xiao H, Yang Y, Qu J, Qing L, Chen L, Xu Z, Peng L, Li Y, Zheng H, Chen F, Huang K,
444		Jiang Y, Liu D, Zhang Z, Liu Y, Liu L. 2020. Treatment of 5 Critically Ill Patients With
445		COVID-19 With Convalescent Plasma. Jama 323:1582-1589.
446	8.	Abolghasemi H, Eshghi P, Cheraghali AM, Imani Fooladi AA, Bolouki Moghaddam F,
447		Imanizadeh S, Moeini Maleki M, Ranjkesh M, Rezapour M, Bahramifar A, Einollahi B,
448		Hosseini MJ, Jafari NJ, Nikpouraghdam M, Sadri N, Tazik M, Sali S, Okati S, Askari E,
449		Tabarsi P, Aslani J, Sharifipour E, Jarahzadeh MH, Khodakarim N, Salesi M, Jafari R,
450		Shahverdi S. 2020. Clinical efficacy of convalescent plasma for treatment of COVID-19
451		infections: Results of a multicenter clinical study. Transfus Apher Sci 59:102875.
452	9.	Rasheed AM, Fatak DF, Hashim HA, Maulood MF, Kabah KK, Almusawi YA,
453		Abdulamir AS. 2020. The therapeutic potential of convalescent plasma therapy on
454		treating critically-ill COVID-19 patients residing in respiratory care units in hospitals in
455		Baghdad, Iraq. Infez Med 28:357-366.
456	10.	Salazar E, Christensen PA, Graviss EA, Nguyen DT, Castillo B, Chen J, Lopez BV,
457		Eagar TN, Yi X, Zhao P, Rogers J, Shehabeldin A, Joseph D, Leveque C, Olsen RJ,
458		Bernard DW, Gollihar J, Musser JM. 2020. Treatment of Coronavirus Disease 2019
459		Patients with Convalescent Plasma Reveals a Signal of Significantly Decreased
460		Mortality. Am J Pathol 190:2290-2303.
461	11.	Perotti C, Baldanti F, Bruno R, Del Fante C, Seminari E, Casari S, Percivalle E,

462		Glingani C, Musella V, Belliato M, Garuti M, Meloni F, Frigato M, Di Sabatino A,
463		Klersy C, De Donno G, Franchini M. 2020. Mortality reduction in 46 severe Covid-19
464		patients treated with hyperimmune plasma. A proof of concept single arm multicenter
465		trial. Haematologica.
466	12.	Liu STH, Lin HM, Baine I, Wajnberg A, Gumprecht JP, Rahman F, Rodriguez D,
467		Tandon P, Bassily-Marcus A, Bander J, Sanky C, Dupper A, Zheng A, Nguyen FT,
468		Amanat F, Stadlbauer D, Altman DR, Chen BK, Krammer F, Mendu DR, Firpo-
469		Betancourt A, Levin MA, Bagiella E, Casadevall A, Cordon-Cardo C, Jhang JS,
470		Arinsburg SA, Reich DL, Aberg JA, Bouvier NM. 2020. Convalescent plasma treatment
471		of severe COVID-19: a propensity score-matched control study. Nat Med 26:1708-1713.
472	13.	Hegerova L, Gooley TA, Sweerus KA, Maree C, Bailey N, Bailey M, Dunleavy V, Patel
473		K, Alcorn K, Haley R, Johnsen JM, Konkle BA, Lahti AC, Alexander ML, Goldman JD,
474		Lipke A, Lim SJ, Sullivan MD, Pauk JS, Pagel JM. 2020. Use of convalescent plasma in
475		hospitalized patients with COVID-19: case series. Blood 136:759-762.
476	14.	Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, Kong Y, Ren L, Wei Q, Mei H, Hu C,
477		Tao C, Yang R, Wang J, Yu Y, Guo Y, Wu X, Xu Z, Zeng L, Xiong N, Chen L, Wang J,
478		Man N, Liu Y, Xu H, Deng E, Zhang X, Li C, Wang C, Su S, Zhang L, Wang J, Wu Y,
479		Liu Z. 2020. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement
480		in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial.
481		Jama 324:460-470.
482	15.	Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, Musser BJ, Soo Y,
483		Rofail D, Im J, Perry C, Pan C, Hosain R, Mahmood A, Davis JD, Turner KC, Hooper
484		AT, Hamilton JD, Baum A, Kyratsous CA, Kim Y, Cook A, Kampman W, Kohli A,
485		Sachdeva Y, Graber X, Kowal B, DiCioccio T, Stahl N, Lipsich L, Braunstein N,
486		Herman G, Yancopoulos GD, Trial Investigators. 2021. REGN-COV2, a Neutralizing

487		Antibody Cocktail, in Outpatients with Covid-19. N Engl J Med 384:238-251.
488	16.	Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J, Huhn G, Cardona J,
489		Mocherla B, Stosor V, Shawa I, Kumar P, Adams AC, Van Naarden J, Custer KL,
490		Durante M, Oakley G, Schade AE, Holzer TR, Ebert PJ, Higgs RE, Kallewaard NL,
491		Sabo J, Patel DR, Klekotka P, Shen L, Skovronsky DM. 2021. Effect of Bamlanivimab
492		as Monotherapy or in Combination With Etesevimab on Viral Load in Patients With
493		Mild to Moderate COVID-19: A Randomized Clinical Trial. Jama.
494	17.	ACTIV-3/TICO LY-CoV555 Study Group, Lundgren JD, Grund B, Barkauskas CE,
495		Holland TL, Gottlieb RL, Sandkovsky U, Brown SM, Knowlton KU, Self WH, Files DC,
496		Jain MK, Benfield T, Bowdish ME, Leshnower BG, Baker JV, Jensen JU, Gardner EM,
497		Ginde AA, Harris ES, Johansen IS, Markowitz N, Matthay MA, Østergaard L, Chang
498		CC, Davey VJ, Goodman A, Higgs ES, Murray DD, Murray TA, Paredes R, Parmar
499		MKB, Phillips AN, Reilly C, Sharma S, Dewar RL, Teitelbaum M, Wentworth D, Cao H,
500		Klekotka P, Babiker AG, Gelijns AC, Kan VL, Polizzotto MN, Thompson BT, Lane HC,
501		Neaton JD. 2021. A Neutralizing Monoclonal Antibody for Hospitalized Patients with
502		Covid-19. N Engl J Med 384:905-914.
503	18.	Karlin NJ, Amin SB, Buras MR, Kosiorek HE, Verona PM, Cook CB. 2018. Patient
504		outcomes from lung cancer and diabetes mellitus: a matched case-control study. Future
505		Sci OA 4:Fso248.
506	19.	Tuccori M, Ferraro S, Convertino I, Cappello E, Valdiserra G, Blandizzi C, Maggi F,
507		Focosi D. 2020. Anti-SARS-CoV-2 neutralizing monoclonal antibodies: clinical pipeline.
508		MAbs 12:1854149.
509	20.	Zhu L, Deng YQ, Zhang RR, Cui Z, Sun CY, Fan CF, Xing XR, Huang WJ, Chen Q,
510		Zhang NN. 2020. Double lock of a potent human therapeutic monoclonal antibody
511		against SARS-CoV-2. National Science Review:nwaa297.

Antimicrobial Agents and Chemotherapy

512	21.	Jeong SS, Choi PJ, Yi JH, Yoon SS. 2017. Impact of Lifestyle Diseases on Postoperative
513		Complications and Survival in Elderly Patients with Stage I Non-Small Cell Lung
514		Cancer. Korean J Thorac Cardiovasc Surg 50:86-93.
515	22.	Sivapalasingam S, Kamal M, Slim R, Hosain R, Shao W, Stoltz R, Yen J, Pologe LG,
516		Cao Y, Partridge M, Sumner G, Lipsich L. 2018. Safety, pharmacokinetics, and
517		immunogenicity of a co-formulated cocktail of three human monoclonal antibodies
518		targeting Ebola virus glycoprotein in healthy adults: a randomised, first-in-human phase
519		1 study. Lancet Infect Dis 18:884-893.
520	23.	Wu Z, McGoogan JM. 2020. Characteristics of and Important Lessons From the
521		Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of
522		72 314 Cases From the Chinese Center for Disease Control and Prevention. Jama
523		323:1239-1242.
524	24.	Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z,
525		Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J,
526		Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. 2020. Clinical features of patients
527		infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497-506.
528	25.	Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y,
529		Zhao Y, Li Y, Wang X, Peng Z. 2020. Clinical Characteristics of 138 Hospitalized
530		Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Jama
531		323:1061-1069.
532	26.	Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei
533		Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. 2020. Clinical course and risk
534		factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a
535		retrospective cohort study. Lancet 395:1054-1062.
536	27.	Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y,

537		Pan S, Zou X, Yuan S, Shang Y. 2020. Clinical course and outcomes of critically ill
538		patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective,
539		observational study. Lancet Respir Med 8:475-481.
540	28.	De Groot AS, Scott DW. 2007. Immunogenicity of protein therapeutics. Trends
541		Immunol 28:482-490.
542	29.	Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ. 2010. The safety and side
543		effects of monoclonal antibodies. Nat Rev Drug Discov 9:325-338.
544	30.	Kernstock R, Sperinde G, Finco D, Davis R, Montgomery D. 2020. Clinical
545		Immunogenicity Risk Assessment Strategy for a Low Risk Monoclonal Antibody. Aaps j
546		22:60.
547	31.	Xue L, Clements-Egan A, Amaravadi L, Birchler M, Gorovits B, Liang M, Myler H,
548		Purushothama S, Manning MS, Sung C. 2017. Recommendations for the Assessment
549		and Management of Pre-existing Drug-Reactive Antibodies During Biotherapeutic
550		Development. Aaps j 19:1576-1586.
551	32.	van de Poll-Franse LV, Houterman S, Janssen-Heijnen ML, Dercksen MW, Coebergh
552		JW, Haak HR. 2007. Less aggressive treatment and worse overall survival in cancer
553		patients with diabetes: a large population based analysis. Int J Cancer 120:1986-1992.
554		

555 Figure legends

- 556 Figure 1. Mean SCTA01 serum concentrations in different dose groups. (A) Mean SCTA01
- 557 serum concentrations versus time (linear scaled) in different dose groups; and (B) Semi-
- 558 logarithmic plot of concentration-time data in different dose groups.

559

560	Table 1. Baseline demographic characteristics of the participants
-----	---

	0 1	-	•			
		SCTA	01 dose		Total SCTA01 (n=25)	Placebo (n=8)
	5 mg/kg (n=3)	15 mg/kg (n=6)	30 mg/kg (n=8)	50 mg/kg (n=8)		
Age (years)						
Mean (SD)	28.0 (4.4)	31.8 (6.9)	30.9 (8.8)	33.4 (6.5)	31.6 (7.0)	30.8 (6.6)
Median (range)	26.0 (25-33)	34 (22-40)	29.5 (20-42)	34.5 (23-44)	33.0 (20-44)	28.5 (24-41)
Race						
Han	3 (100%)	6	8	8	25 (100%)	8 (100%)
		(100%)	(100%)	(100%)		
Other	0	0	0	0	0	0
Sex						
Male	1 (33.3%)	5 (83.3%)	5 (62.5%)	6 (75.0%)	17 (68.0%)	5 (62.5%)
Female	2 (66.7%)	1 (16.7%)	3 (37.5%)	2 (25.0%)	8 (32.0%)	3 (37.5%)
Height (cm)						
Mean (SD)	164.5 (4.1)	169.3 (3.1)	165.3 (9.4)	163.7 (8.0)	165.7 (7.3)	166.8 (7.3)
Median (range)	164.1 (160.6-168.8)	170.1 (164.8-172.9)	165.4 (153.8-179.2)	163.8 (151.6-174.0)	165.9 (151.6-179.2)	168.6 (154.6-175.6)
Body weight (kg)						
Mean (SD)	60.5 (2.5)	67.8 (2.4)	60.9 (6.2)	60.9 (7.8)	62.5 (6.3)	61.4 (5.8)
Median (range)	60.3 (58.2-63.1)	67.7 (65.1-70.9)	63.3 (50.2-67.8)	61.7 (49.6-70.5)	64.3 (49.6-70.9)	59.8 (54.1-71.9)
BMI (kg/m2)						
Mean (SD)	22.4 (0.3)	23.7 (0.5)	22.3 (1.9)	22.7 (1.7)	22.8 (1.5)	22.1 (2.1)
Median (range)	22.4 (22.1-22.6)	23.8 (23.4-24.0)	22.4 (20.8-23.3)	22.35 (21.5-24.0)	22.55 (20.2-24.0)	22.8 (21.8-23.9)

26

561 Data are presented as number of patients (%). Antimicrobial Agents and Chemotherapy 562 SD, standard deviation; BMI, body mass index.563

564

27

AAC

565	Table 2. Administration of SCTA01 and placebo in the participants
-----	---

		SCL	Total SCTA01	Placebo		
	5 mg/kg (n=3)	15 mg/kg (n=6)	30 mg/kg (n=8)	50 mg/kg (n=8)	(n=25)	(n=8)
Duration of observation (days)						
Mean (SD)	85.0 (0.0)	84.0 (0.0)	86.1 (4.5)	85.5 (1.4)	85.3 (2.7)	84.5 (0.5)
Median (range)	85.0 (85-85)	84.0 (84-84)	84.0 (84-97)	85.0 (85-89)	85.0 (84-97)	84.5 (84-85)
Actual total SCTA01 dose						
injected(mg)						
Mean (SD)	302.7 (12.3)	1016.3 (35.4)	1825.9 (185.3)	3043.8 (392.1)	1838.5 (1001.6)	/
Median (range)	301.5 (291-316)	1015.5 (977-1064)	1897.5 (1506-2034)	3082.5 (2480-3535)	1872.0 (291-3525)	/

566 The 33 participants were randomized into four cohorts as follows: 1) Cohort 1, 3:2 to SCTA01 5 mg/kg or placebo; 2) Cohort 2, 6:2 to SCTA01 15 mg/kg or

567 placebo; 3) Cohort 3, 8:2 to SCTA01 30 mg/kg or placebo; and 4) Cohort 4: 8:2 to SCTA01 50 mg/kg or placebo. Participants receiving placebo in the four

568 cohorts were pooled together.

569 SD, standard deviation.

Antimicrobial Agents and Chemotherapy

AAC

28

		SCTA	.01 dose		Total	
	5 mg/kg	15 mg/kg	30 mg/kg	50 mg/kg	SCTA01	Placebo
	(N = 3)	(N = 6)	(N = 8)	(N = 8)	(N = 25)	(N = 8)
Any adverse event	1 (33.3)	2 (33.3)	5 (62.5)	5 (62.5)	13 (52.0)	5 (62.5)
Any adverse event of \geq grade 3	0	0	0	0	0	0
Laboratory investigations	1 (33.3)	2 (33.3)	4 (50.0)	3 (37.5)	10 (40.0)	5 (62.5)
Increased conjugated bilirubin	1 (33.3)	0	2 (25.0)	1 (12.5)	4 (16.0)	0
Increased unconjugated bilirubin	1 (33.3)	0	1 (12.5)	1 (12.5)	3 (12.0)	1 (12.5)
Increased blood bilirubin	1 (33.3)	0	1 (12.5)	0	2 (8.0)	0
Increased alanine aminotransferase	0	1 (16.7)	0	0	1 (4.0)	0
Increased aspartate aminotransferase	0	0	0	0	0	1 (12.5)
Decreased neutrophil count	0	0	1 (12.5)	0	1 (4.0)	0
Decreased lymphocyte count	0	0	0	0	0	1 (12.5)
Increased fibrin D dimer	0	0	1 (12.5)	0	1 (4.0)	0
Increased platelet count	0	0	1 (12.5)	0	1 (4.0)	0
Decreased fibrinogen	0	0	1 (12.5)	0	1 (4.0)	0
Increased potassium	0	0	0	1 (12.5)	1 (4.0)	0
Increased white blood cell count in the urine	0	0	0	1 (12.5)	1 (4.0)	1 (12.5)
Protein in urine	1 (33.3)	1 (16.7)	0	0	2 (8.0)	0
Prolonged QT interval	0	1 (16.7)	0	0	1 (4.0)	0
Decreased diastolic blood pressure	0	0	0	0	0	1 (12.5)
Respiratory, thoracic and	0	0	0	1 (10.5)	1 (1 0)	0
mediastinal disorders	0	0	0	1 (12.5)	1 (4.0)	0
Epistaxis	0	0	0	1 (12.5)	1 (4.0)	0
Cardiac disorders	0	1 (16.7)	0	0	1 (4.0)	0
Sinus bradycardia	0	1 (16.7)	0	0	1 (4.0)	0
Skin and subcutaneous tissue disorders	0	0	0	1 (12.5)	1 (4.0)	0
Rash	0	0	0	1 (12.5)	1 (4.0)	0
Renal and urinary disorders	0	0	1 (12.5)	0	1 (4.0)	0
Hematuria	0	0	1 (12.5)	0	1 (4.0)	0

570 **Table 3.** Number of participants with treatment-related adverse events within the 84 days

571 Data are presented as the number (%) of participants with one or more TRAEs.

572

Parameters	SCTA01 dose						
	5 mg/kg (n=3)	15 mg/kg (n=6)	30 mg/kg (n=8)	50 mg/kg (n=8)			
T _{max} (h)	1.32 (0.32-1.32)	1.92 (0.92-8.92)	2.83 (1.83-9.83)	3.16 (3.15-3.17)			
C_{max} (µg/mL)	84.8	307	607	1040			
AUC_{0-28d} (d*µg/mL)	1120	3750	7700	11900			
$AUC_{0-t}(d*\mu g/mL)$	1940	6690	12700	19600			
$AUC_{0-\infty}(d^*\mu g/mL)$	2270	7760	14400	21900			
$t_{1/2}(d)$	30.2	28.0	27.2	25.8			
CL (L/h)	0.00563	0.00552	0.00538	0.00587			
Vd (L)	5.82	5.31	5.00	5.16			
AUC _{0-inf} /dose	7.49	7.62	7.93	7.34			
(d*µg/mL/mg)							

573 **Table 4.** Pharmacokinetic parameters of SCTA01

574 Data are presented as median (range) or arithmetic mean.

575 T_{max} , the time taken to reach the maximum concentration; C_{max} , maximum concentration; AUC, the

576 area under the concentration-time curve; $AUC_{0.28d}$, the integral of the concentration-time curve from

577 dosing to day 28; AUC_{0-t} , the integral of the concentration-time curve from dosing to time-point;

578 AUC_{0-xx}, the integral of the concentration-time curve from dosing to infinity; CL, clearance; Vd,

579 volume of distribution.

580

581

Antimicrobial Agents and Chemotherapy

AAC

Follow-up time	SCTA01 dose				Total
	5mg/kg (N = 3)	15mg/kg (N = 6)	30mg/kg (N = 8)	50mg/kg (N = 8)	SCTA01 (N = 25)
Baseline	0	0	0	1	1
Day 7 (±1d)	1	1	1	1	4
Day 14 (±2d)	0	0	0	0	0
Day 28 (+3d)	0	1	0	0	1
Day 42 (±3d)	0	0	0	0	0
Day 63 (±3d)	0	0	0	0	0
Day 84 (±3d)	0	0	0	0	0
Overall	1	1	1	1	4
Nab					
Baseline	0	0	0	1	1
Day 7 (±1d)	0	0	1	1	2
Day 14 (±2d)	0	0	0	0	0
Day 28 (+3d)	0	1	0	0	1
Day 42 (±3d)	0	0	0	0	0
Day 63 (±3d)	0	0	0	0	0
Day 84 (±3d)	0	0	0	0	0
Overall	0	1	1	1	3

582 **Table 5.** Incidence of treatment emergent anti-drug antibody response after SCTA01

583 administration

584 Data are presented as binary (1, number of participants with a positive response; 0, number of

585 participants with a negative response).

586 ADA, anti-drug antibody response; Nab, neutralizing antibodies

